56 research outputs found

    Complementing Prostate SBRT VMAT With a Two-Beam Non-Coplanar IMRT Class Solution to Enhance Rectum and Bladder Sparing With Minimum Increase in Treatment Time

    Get PDF
    Purpose Enhance rectum and bladder sparing in prostate SBRT with minimum increase in treatment time by complementing dual-arc coplanar VMAT with a two-beam non-coplanar IMRT class solution (CS). Methods For twenty patients, an optimizer for automated multi-criterial planning with integrated beam angle optimization (BAO) was used to generate dual-arc VMAT plans, supplemented with five non-coplanar IMRT beams with individually optimized orientations (VMAT+5). In all plan generations, reduction of high rectum dose had the highest priority after obtaining adequate PTV coverage. A CS with two most preferred directions in VMAT+5 and largest rectum dose reductions compared to dual-arc VMAT was then selected to define VMAT+CS. VMAT+CS was compared with automatically generated i) dual-arc coplanar VMAT plans (VMAT), ii) VMAT+5 plans, and iii) IMRT plans with 30 patient-specific non-coplanar beam orientations (30-NCP). Plans were generated for a 4 x 9.5 Gy fractionation scheme. Differences in PTV doses, healthy tissue sparing, and computation and treatment delivery times were quantified. Results For equal PTV coverage, VMAT+CS, consisting of dual-arc VMAT supplemented with two fixed, non-coplanar IMRT beams with fixed Gantry/Couch angles of 65 degrees/30 degrees and 295 degrees/-30 degrees, significantly reduced OAR doses and the dose bath, compared to dual-arc VMAT. Mean relative differences in rectum D-mean, D-1cc, V-40GyEq and V-60GyEq were 19.4 +/- 10.6%, 4.2 +/- 2.7%, 34.9 +/- 20.3%, and 39.7 +/- 23.2%, respectively (all p Conclusions The proposed two-beam non-coplanar class solution to complement coplanar dual-arc VMAT resulted in substantial plan quality improvements for OARs (especially rectum) and reduced irradiated patient volumes with minor increases in treatment delivery times

    Automated VMAT planning for postoperative adjuvant treatment of advanced gastric cancer

    Get PDF
    Background: Postoperative/adjuvant radiotherapy of advanced gastric cancer involves a large planning target volume (PTV) with multi-concave shapes which presents a challenge for volumetric modulated arc therapy (VMAT) planning. This study investigates the advantages of automated VMAT planning for this site compared to manual VMAT planning by expert planners. Methods: For 20 gastric cancer patients in the postoperative/adjuvant setting, dual-arc VMAT plans were generated using fully automated multi-criterial treatment planning (autoVMAT), and compared to manually generated VMAT plans (manVMAT). Both automated and manual plans were created to deliver a median dose of 45 Gy to the PTV using identical planning and segmentation parameters. Plans were evaluated by two expert radiation oncologists for clinical acceptability. AutoVMAT and manVMAT plans were also compared based on dose-volume histogram (DVH) and predicted normal tissue complication probability (NTCP) analysis. Results: Both manVMAT and autoVMAT plans were considered clinically acceptable. Target coverage was similar (manVMAT: 96.6 ± 1.6%, autoVMAT: 97.4 ± 1.0%, p = 0.085). With autoVMAT, median kidney dose was reduced on average by > 25%; (for left kidney from 11.3 ± 2.1 Gy to 8.9 ± 3.5 Gy (p = 0.002); for right kidney from 9.2 ± 2.2 Gy to 6.1 ± 1.3 Gy (p <  0.001)). Median dose to the liver was lower as well (18.8 ± 2.3 Gy vs. 17.1 ± 3.6 Gy, p = 0.048). In addition, Dmax of the spinal cord was significantly reduced (38.3 ± 3.7 Gy vs. 31.6 ± 2.6 Gy, p <  0.001). Substantial improvements in dose conformity and integral dose were achieved with autoVMAT plans (4.2% and 9.1%, respectively; p <  0.001). Due to the better OAR sparing in the autoVMAT plans compared to manVMAT plans, the predicted NTCPs for the left and right kidney and the liver-PTV were significantly reduced by 11.3%, 12.8%, 7%, respectively (p ≤ 0.001). Delivery time and total number of monitor units were increased in autoVMAT plans (from 168 ± 19 s to 207 ± 26 s, p = 0.006) and (from 781 ± 168 MU to 1001 ± 134 MU, p = 0.003), respectively. Conclusions: For postoperative/adjuvant radiotherapy of advanced gastric cancer, involving a complex target shape, automated VMAT planning is feasible and can substantially reduce the dose to the kidneys and the liver, without compromising the target dose delivery

    Institutional experience in the treatment of colorectal liver metastases with stereotactic body radiation therapy

    Get PDF
    AimTo investigate whether the impact of dose escalation in our patient population represented an improvement in local control without increasing treatment related toxicity.Materials and methodsA cohort of consecutive patients with colorectal liver metastases treated with stereotactic body radiation therapy (SBRT) between December 2002 and December 2013 were eligible for this study. Inclusion criteria were a Karnofsky performance status ≥80% and, according to the multidisciplinary tumor board, ineligibility for surgery or radiofrequency ablation. Exclusion criteria were a lesion size >6[[ce:hsp sp="0.25"/]]cm, more than 3 metastases, and treatment delivered with other fractionation scheme than 3 times 12.5[[ce:hsp sp="0.25"/]]Gy or 16.75[[ce:hsp sp="0.25"/]]Gy prescribed at the 65–67% isodose. To analyze local control, CT or MRI scans were acquired during follow-up. Toxicity was scored using the Common Toxicity Criteria Adverse Events v4.0.ResultsA total of 40 patients with 55 colorectal liver metastases were included in this study. We delivered 37.5[[ce:hsp sp="0.25"/]]Gy to 32 lesions, and 50.25[[ce:hsp sp="0.25"/]]Gy to 23 lesions. Median follow-up was 26 and 25 months for these two groups. Local control at 2 and 3 years was 74 and 66% in the low dose group while 90 and 81% was reached in the high dose group. No significant difference in local control between the two dose fractionation schemes could be found. Grade 3 toxicity was limited and was not increased in the high dose group.ConclusionsSBRT for colorectal liver metastases offers a high chance of local control at long term. High irradiation doses may contribute to enhance this effect without increasing toxicity

    A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy

    Get PDF
    Technical improvements in planning and dose delivery and in verification of patient positioning have substantially widened the therapeutic window for radiation treatment of cancer. However, changes in patient anatomy during the treatment limit the exploitation of these new techniques. To further improve radiation treatments, anatomical changes need to be modeled and accounted for. Non-rigid registration can be used for this purpose. This paper describes the design, the implementation and the validation of a new framework for non-rigid registration for radiotherapy applications. The core of this framework is an improved version of the Thin Plate Splines Robust Point Matching (TPS-RPM) algorithm. The TPS-RPM algorithm estimates a global correspondence and a transformation between the points that represent organs of interest belonging to two image sets. However, the algorithm does not allow for the inclusion of prior knowledge on the correspondence of subset of points and therefore, it can lead to inconsistent anatomical solutions. In this paper TPS-RPM was improved by employing a novel correspondence filter that supports simultaneous registration of multiple structures. The improved method allows for coherent organ registration and for the inclusion of user defined landmarks, lines and surfaces inside and outside of structures of interest. A procedure to generate control points form segmented organs is described. The framework parameters r and ?, which control the number of points and the non-rigidness of the transformation respectively, were optimized for three sites with different degrees of deformation: head and neck, prostate and cervix, using two cases per site. For the head and neck cases, the salivary glands were manually contoured on CT-scans, for the prostate cases the prostate and the vesicles, and for the cervix cases the cervix-uterus, the bladder and the rectum. The transformation error obtained using the best set of parameters was below 1 mm for all the studied cases. The length of the deformation vectors were on average (± 1 standard deviation) 5.8 ± 2.5 and 2.6 ± 1.1 mm for the head and neck cases, 7.2 ± 4.5 and 8.6 ± 1.9 mm for the prostate cases, and 19.0 ± 11.6 and 14.5 ± 9.3 mm for the cervix cases. Distinguishable anatomical features were identified for each case, and were used to validate the registration by calculating residual distances after transformation: 1.5 ± 0.8, 2.3 ± 1.0 and 6.3 ± 2.9 mm for the head and neck, prostate and cervix sites respectively. Finally, we demonstrated how the inclusion of these anatomical features in the registration process reduced the residual distances to 0.8 ± 0.5, 0.6 ± 0.5 and 1.3 ± 0.7 mm for the head and neck, prostate and cervix sites respectively. The inclusion of additional anatomical features produced more anatomically coherent transformations without compromising the transformation error. We concluded that the presented non-rigid registration framework is a powerful tool to simultaneously register multiple segmented organs with very different complexity

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Automation in intensity-modulated radiotherapy treatment planning - a review of recent innovations

    No full text
    Radiotherapy treatment planning of complex radiotherapy techniques, such as Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT), is a resource-intensive process requiring a high level of treatment planner intervention to ensure high plan quality. This can lead to variability in the quality of treatment plans and the efficiency in which plans are produced, depending on the skills and experience of the operator and available planning time. Within the last few years, there has been significant progress in the research and development of IMRT treatment planning approaches with automation support, with most commercial manufacturers now offering some form of solution. There is a rapidly growing number of research articles published in the scientific literature on the topic. This paper critically reviews the body of publications up to April 2018. The review describes the different types of automation algorithms, including the advantages and current limitations. Also included is a discussion on the potential issues with routine clinical implementation of such software, and highlights areas for future research

    A symmetric nonrigid registration method to handle large organ deformations in cervical cancer patients

    No full text
    Purpose: Modern radiotherapy requires assessment of patient anatomical changes. By using unidirectional registration methods, the quantified anatomical changes are asymmetric, i.e., depend on the direction of the registration. Moreover, the registration is challenged by the large and complex organ deformations that can occur in, e. g., cervical cancer patients. The aim of this work was to develop, test, and validate a symmetric feature-based nonrigid registration method that can handle organs with large-scale deformations. Methods: A symmetric version of the unidirectional thin plate spline robust point matching (TPS-RPM) algorithm was developed, implemented, tested, and validated. Tests were performed by using the delineated cervix and uterus and bladder in CT scans of five cervical cancer patients. For each patient, five CT scans with a large variability in organ shape, volume, and deformations were acquired. Both the symmetric and the unidirectional algorithm were employed to calculate the registration geometric accuracy (surface distance and surface coverage errors), the inverse consistency, the residual distances after transforming anatomical landmarks, and the registration time. Additionally, to facilitate the further use of our symmetric method, a large set of input parameters was tested. Results: The developed symmetric algorithm handled successfully the registration of bladders with extreme volume change for which TPS-RPM failed. Compared to the unidirectional algorithm the symmetric algorithm improved, for the registration of organs with large volume change, the inverse consistency by 78% and the surface coverage by 46%. Similarly, for organs with small volume change, the symmetric algorithm improved the inverse consistency by 69% and the surface coverage by 13%. The method allowed for anatomically coherent registration in only 35 s for cervixuterus and 151 s for bladder, while keeping the inverse consistency errors around 1 mm and the surface matching errors below 1 mm. Compared to rigid alignment the symmetric method reduced the residual distances between anatomical landmarks from a range of 5.8 +/- 2-70.1 +/- 20.1 mm to a range of 1.9 +/- 0.2-8.5 +/- 5.2 mm. Conclusions: The developed symmetric method could be employed to perform fast, accurate, consistent, and anatomically coherent registration of organs with large and complex deformations. Therefore, the method is a useful tool that could support further developments in high precision image guided radiotherapy. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3443436
    corecore